在用双刀架车床加工同一种工件,如果使用不同的工艺,效率就会相差很多。这里的核心是循环时间即加工时间的平衡问题。这当中,一是前、后两道工序间加工时间平衡,二是每道工序上、下刀架间加工时间平衡。如果措施合理,工效可提高许多。
如图8-11和图8-12所示是一种轴承内环车削时前、后两工序。前工序中,T1、T2刀装在上刀架,T3、T4装在下刀架上;后工序,T1、T2、T3刀装在上刀架上,T4、T5、T6刀装在下刀架上。
原来按常规方法排工艺,前工序没有图中的T3刀,而后工序图中多了一把T7刀(实际是前工序T3刀移过来的),即大挡边③粗车部分放在后工序车削。那时前工序的循环时间是61s,后工序的循环时间是89s。此工件是大批量加工,前工序时问很松,后工序
1—小油沟切削部和小外径精切部;2—滚道精切部;3—小端面粗切部; 4—小外径和滚道粗切部;5—大油沟切削部;6—大挡边切削部和端面精切部。时间很紧,影响加工效率。第一个措施是后工序移一把刀到前工序,如图所示。原来前工序用3把刀,即是一个刀台装两把刀,另一个刀台上装一把刀,无论怎样安排,上、下刀架的加工时间都无法平衡。现在上、下刀架各安装两把刀后,再合理安排切削路线,使上、下刀架差不多都同时结束切削,同时退刀。这样使前工序的循环时间降至72s,这时后工序的循环时间是78s。
至此,上工序的上、下刀架切工时间是平衡了,而前、后工序的加工时间仍不平衡。观察得知,后工序的上、下刀架加工的时间,一个结束早,一个结束晚相差很大。于是,在后工序6把刀中,3把装在上刀架,3把装在下刀架的前提下,做了四种切削方案,经计算和实际切削,选择了现在这个方案:使上、下刀架基本同时结束切削与退刀,循环时间也是72s。至此,不但前、后工序各自的上、下刀架加工时间达到平衡,而且前、后工序的循环时间也达到了平衡。a也可以说,这就是最佳方案。
如果把前、后工序组成一条生产线,那末这一线的循环时间由原来的89s,降为现在的72s,缩短了19%的加工时间,使工效明显提高。
7 使用恒线速度切削时应注意的问题
恒线速度切削也叫固定线速度切削,它的含意是在车削非圆柱形内、外径时,车床主轴转速可以连续变化,以保持实时切削位置的切削线速度不变(恒定)。中挡以上的数控车床一般都有这个功能。使用此功能不但可以提高工效,还可以提高加工表面的质量,即切削出的端面或锥面等的表面粗糙度一致性好。这里以图8-13为例说明使用此功能时应注意的问题。
图8-13中刀具(尖)的轨迹虚线表示快速进给,实线表示工作进给,F点及其尺寸是为下面的说明加进去的。
一是要注意在使用该功能前一般应限制最高转速.如果刀具要行进到离工件回转中心很近,那么在恒线速度指令前必须限制最高转速,否则会出现“飞车”。本例中按我们机床的说明书及具体的安装情况,确定最高转速不要超过3000r/min。根据工件材料和所用刀具的情况,切削线速度决定选择200m/knin。下列程序是图a示零件的实际加工程序。
0123;
N1 G50 X~Z~T0100:
N2 G97G00Xa Za S1000 M04;
N3 Xb Zb S1061 T0101 M08;
N4 G50 S3000:
N5 G96G01Xc ZcF0.2$200;
N6 G97G00 Zd$746;
N7 Xe
N8 G96G01 Xg$200;
N9 G97 COO Xh Zh S1500 M09;
N10 G28 U0 W0 M05;
N11 M02:
这里将3000r/min限速编入N4段内。这个“G50S3000;”指令也可提前到前面任何位置,在本例中只要在N5段前都可以。这样的结果是:在做端面的恒线速度切削过程中,F点及其之上部分是$200恒线速度切削,从F点开始转速不再增加,即转成恒角速度(3000r/min)切削,直到G点。如果没有N4段的转速限制指令,那么F点之下转速继续增加,到G点时理论上要达到6366r/min,这非常危险。
二是要注意这个功能一般不能用在快进(G00)程序段内。换句话说,在G96程序段开始及之下、G97程序段之前,一般不能出现COO程序段。本例中,如果把N6中的G97和N8中的G96去掉,虽然锥面和端面仍可作恒线速度切削,但在执行N7段即从D点快速到达E点过程中主轴会突然加速,从530r/min急升到909r/min。如果刀具已到达E点而主轴尚未升到909r/min,那么刀具就会在E点等待,直到主轴升到909r/min再开始切削端面。
三是最好算出G96起始点的主轴转速,然后把转速变化量分摊到前面的COO程序段中。本例中,可算得B、E点的转速分别为1061r/min和909r/min。可见,B点前的转速变动量为1061r/min。由于起始点到A点间距离较长,把1000r/rain的变动量安排在A点之前,只给A、B间留61r/min变动量。N2段中的这个S值如要更精确,可根据上述距离与A、B间距离之比来算出。另外,可算得C点处为530r/min,这样C到E间的转速变动量为379r/min,由于CD与DE的长度比约为4:3,所以我们安排CD问上升216r/min,DE间上升163r/min,这样可以减少甚至消除刀具的等待时间,进而提高加工效率。
8 圆倒角的数控车削技巧
零件的圆倒角一般有三种类型,图8-14是最常见的一种。图中的虚线是毛坯轮廓面。具体的零件图会给出a、b和R尺寸的数值。加工时,首选80。等边菱形刀片端面外径刀,刀片的刀尖圆弧半径r可根据加工情况选定。这里以刀片左侧的假想刀尖点为刀T的代表点。
现在讨论车削方案。假定先车端面、后车外径。从A点开始,用工进向下切削端面。切完端面后,让刀具快速到达B点,再用逆时针圆弧插补切削到C点,接着用工进向左切削外径。根据a、b、R值求B点相对于O点坐标的顺序为:先算出圆心H点的坐标,再用r经过M点过渡就可算出B点的坐标。根据已算出的H点坐标可得出N点的坐标,然后C点的坐标就出来了。这种加工方法的优点一是省时间,端面不用向下切削后再向上吃小量拉一刀,二是编程简单:圆弧插补G03段内的I为零(可省略),K为负(R+r)值,不必做几何计算。如改成先车外径后车端面,也可用类似上述的方法来车削。
圆倒角的第二种类型如图8-15所示。图中给出口a、b、R、a、β值,刀尖圆弧半径r由工艺选定。为看得清楚,毛坯的外轮廓在图中未画出。这里选择先车端面后车外径。从毛坯之外的A点开始,向下切端面后,让刀具快速到达B点。B点与端面的距离L可自定。本方案的技巧就是在于添加一条距端面L距离的这条过渡线。刀具由B工进到C,再逆时针圆弧插补走到D,再工进到E,最后-向左切削外径。图中B、C、D、E相对于0点的坐标值,可用6个已知数求出,在此就不再详述。
圆倒角的第三种类型,是要求圆角分别与端面、外径相加,如图8-16所示。
如果精度要求一般,可用普通级刀片按左图所示方法加工。从毛坯外径的A点开始,向下切端面到B。AB与0C间留一个很小的量,如0.05mm或0.1mm。再用小进给量切削到C,工进向上拉到D,再切削圆角到E,再向左切削外径。如果圆角的精度要求高,应相应提高刀片的精度等级。如果这种圆倒角的精度要求不高,可按右图所示的方法加工。这里的技巧是对端面与圆角的相对位置作一些工艺修正,以达到端面不用车削两次的目的。具体切削步骤为:从毛坯外径之外的A点开始,向下切完端面后,快退到D,再切削圆弧到E,再向左切削外径。注意修正量L的选取。只要车削 端面后快退时不拉伤端面,L值应尽可能取得小一些。这主要取决于机床导轨的间隙和刀架的刚性,具体值可通过试切来决定。
9 前、后工序使用同一程序时的注意事项
在有些轴向对称零件车削加工时,前、后工序可使用同序。下面特举一非标准滚动轴承外环为例,说明前、后工序使用同一程序时的注意事项,如图8-17所示。
图8-17所示剖面的周边需要车削,当然是安排两道工序加工完成。前工序的装卡如图中所示,后工序要调头,夹在已车削好的外径上。两道工序用同样的3把刀。下面介绍在一台数控车床上先后作前、后工序加工。图中的A既是零件毛坯端面与轴心线的交点,又是定位块端平面与主轴回转中心线的交点。
一程由于使用同一台车床,工件外径上的滚字沟和小内径在前工序车或后工序车都可以。如果这两处决定在前工序车,那么车前工序时把操作面板上的跳读开关扳到“OFF”侧,车后工序时把此开关扳到“ON”侧。反之也一样。
前、后工序使用同一个程序的优点不光是可以少输入和存储一个程序,更重要的是加工时可带来不少方便。还是以这个零件为例。程序输入后要调试(试加工),当然是先调试0P-I。试车出第一件,取下测量。与图纸对比后决定并修改每把刀的刀具补偿值。我们发现牙口和滚道的尺寸不一致,有时会差0.08,这时就要对程序作相应的数据调整:或者调滚道的尺寸,或者调牙口的尺寸。如果调得好,第2件试车工件就能完全达到图纸要求(当然是一头)。当一批工件一头车完后,调头车后工序,这时除了扳面板上的跳读开关外,刀补和程序不必作任何变动。只要第一头达到图纸要求,这另一头一定也会达到图纸要求。
使用这种方法要注意一个问题:Z向原点在前、后工序是不同的。前工序的原点在A点,后工序的原点在B点。这两点间的距离Z就是端面车削留量。这个问题的程序处理是这样的:在N1段下面加一个N2预置寄存程序段“G50 Wl”,并在这段之首加一个“/’符。如果忽略这一点,后工序车出的工件会比图纸要求长出ι来,而且端面基本没有车着。也可用调整每把刀的Z向刀补值来代替程序处理,但比较起来还是程序处理法方便,也不易出错。