1 陶瓷球轴承的理论分析
mm
mm
接触角
材料
材料
材料
图1 高速主轴单元结构简图
(r/min)
mm
kW
2 试验研究
- 试脸条件 本次试验所用陶瓷球轴承参数如表1所示。所用陶瓷球的材料为HIPSN(热等静压氮化硅),精度等级是G3级,装配时球与套圈按规值精细选配。该轴承采用“小珠密珠”结构,并使用外圈薄形保持架。试验中所用钢轴承与陶瓷球轴承具有相同的结构参数。
- 试验所用的电主轴有两种型号,分别为A型和B型。结构简图见图1所示,轴承安装形式为DBB。表2是两种电主轴的主要性能参数。
- 本试验采用热电偶测温法测量主轴前端轴承外圈的温升,又利用PDD测量高速电主轴前、后端的振动频谱,分析两种轴承对电主轴运转精度的影响。
- 试验所用的电主轴有两种型号,分别为A型和B型。结构简图见图1所示,轴承安装形式为DBB。表2是两种电主轴的主要性能参数。
- 试验测试结果分析
- 主轴轴承的高速性能根据两种高速电主轴的实验数据绘制的温升特性曲线,由图2、3可见,A型主轴转速由2000r/min上升至极限30000r/min时,钢轴承温度由4℃上升至35℃;主轴转速由2000r/min上升至转速40000r/min时,陶瓷球轴承温度由35℃上升至43℃,为防止温度过高损坏陶瓷球轴承,停止继续升高转速的试验。实验中显示,在相同温升水平上,即温升为35℃时装有陶瓷球轴承的电主轴转速比钢轴承型主轴提高约30%。
- 在B型电主轴中,应用陶瓷球轴承,电主轴的实际转速比使用钢轴承时的极限转速相应提高约30%~50%。
- 从上述试验结果和理论分析可知,陶瓷球轴承比钢轴承更适用于高速运转条件。
- 在B型电主轴中,应用陶瓷球轴承,电主轴的实际转速比使用钢轴承时的极限转速相应提高约30%~50%。
- 主轴轴承的温升由图2可见,A型主轴转速小于15000r/min时,两种轴承的温升基本相同。当转速大于15000r/min时,陶瓷球轴承的温升明显低于钢轴承。钢轴承温升增长率比陶瓷球轴承的快。
- 由图3可以看出,B型主轴的轴承温升的总体变化趋势与A型电主轴相似。但主轴转速较低时,陶瓷球轴承的温升略高于钢轴承,温升增长率比钢轴承小。当转速n>17000r/min时,才能显示出陶瓷球轴承的低温升特性。脂润滑条件下陶瓷球轴承的运转速度和油雾润滑时钢轴承的运行速度相当。实验中发现,B型陶瓷球轴承达到热平衡时的温升和所需时间,与A型钢球轴承达到热平衡时的温升和所需时间相近。
图2 A型电主轴的温升特性
图3 B型电主轴的温升特性
图4 电主轴不同供油条件下的温升特性- 图4所示是B型不同供油量条件下的主轴轴承的温升曲线,从中可见,陶瓷球轴承最低时所需求的供油量低于钢轴承,并且当突然中断供油时,陶瓷球轴承能维持一段时间的正常工作,而钢轴承在较短时间内就会烧坏。
- 由上述可知,不论用油雾润滑还是脂润滑,在高速或润滑不足时,陶瓷球轴承的温升都小于钢轴承,陶瓷球轴承的寿命高于钢轴承。分析认为:①由于HIPSN陶瓷球产生的离心力和陀螺力矩小,使陶瓷球轴承发热量少。②轴承在装配时需要预紧,预紧力越大,变形和发热越多,轴承温升也越快。轴承高速运转下,轴承承受的总负荷包括初期预紧力和轴承内部负荷。内部负荷由离心力和热膨胀差引起的。轴承工作时的预紧力大于装配时的原始预紧力,从而使摩擦发热增加,轴承温升增大。由于HIPSN陶瓷材料的热膨胀系数仅为轴承钢的25%,故当转速提高时,陶瓷球轴承的温升值比钢轴承小得多。资料表明,陶瓷球轴承的内圈材料采用热膨胀系数比轴承钢小20%的不锈钢、渗碳钢等材料,可以有效降低轴承的温升。
- 由图3可以看出,B型主轴的轴承温升的总体变化趋势与A型电主轴相似。但主轴转速较低时,陶瓷球轴承的温升略高于钢轴承,温升增长率比钢轴承小。当转速n>17000r/min时,才能显示出陶瓷球轴承的低温升特性。脂润滑条件下陶瓷球轴承的运转速度和油雾润滑时钢轴承的运行速度相当。实验中发现,B型陶瓷球轴承达到热平衡时的温升和所需时间,与A型钢球轴承达到热平衡时的温升和所需时间相近。
- 主轴振动频谱分析 使用高灵敏度的压电晶体传感器,运用离散傅立叶原理进行信号交换计算,图5、6是利用PDB测得的A型电主轴振动频谱。由图5可见,电主轴前端振动加速度波动较大,导致电主轴的运转精度降低、刚度下降。由图6可见,装有陶瓷球轴承的电主轴前端振动加速度变化极小,主轴运转的动态精度高。对比两种类型电主轴表明,使用陶瓷球轴承,可以有效减少电主轴的振动,提高电主轴的运转精度和刚度。
图5 装有钢轴承电主轴前端振动频
图6 装有陶瓷球轴承电主轴前端振动频
- 主轴轴承的高速性能根据两种高速电主轴的实验数据绘制的温升特性曲线,由图2、3可见,A型主轴转速由2000r/min上升至极限30000r/min时,钢轴承温度由4℃上升至35℃;主轴转速由2000r/min上升至转速40000r/min时,陶瓷球轴承温度由35℃上升至43℃,为防止温度过高损坏陶瓷球轴承,停止继续升高转速的试验。实验中显示,在相同温升水平上,即温升为35℃时装有陶瓷球轴承的电主轴转速比钢轴承型主轴提高约30%。
3 结束语
- 在相同条件下,陶瓷球轴承比钢轴承更适用于高速运转条件。将陶瓷球轴承应用于高速主轴单元的设计、制造中,可以有效提升主轴的极限转速,减少高速主轴的振动,提高主轴的运转精度和刚度。
- 应用陶瓷球轴承可以延长电主轴的使用寿命,简化与之配套的润滑系统。但要解决低速运转条件下,陶瓷球轴承刚度差、精度低的问题。