模具技术是精锻成形工艺链中最重要的一环。精锻件的高尺寸精度和表面质量,相应对模具设计、加工技术提出了更高的要求。精锻生产线的自动化趋势更增加了精锻模具的复杂程度。高效率的模具CAD/CAM/CAE…Cax平台已经成为精锻企业在激烈的市场竞争中取胜的关键技术。
1、引 言
随着制造述的不断发展,省能、精密、高效成形技术已成为当今金属塑性加工领域重点研究和发展的方向之一。精锻成形技术在汽车工业中得到越来越广泛的应用。汽车工业中的一些典型锻件,包括极爪、伞齿轮、联轴器、轴颈、内星轮、十字轴、外星轮、三销套等,这些零件都为受力件,其机械性能要求较高,若采用传统热模锻工艺来生产,则原材料消耗及后续机加工量大,生产成本高,且金属流线切断很多,零件的机械性能降低;若采用精锻工艺(温锻、冷锻或温锻—冷精整综合成形)生产,则可以获得很高的尺寸精度和表面质量,生产净成形或近似净成形件,大大降低原材料消耗及后续机加工量,而且模具寿命长,能保证零件的机械性能。汽车零件一般批量较大,采用高效率的精锻成形可取得良好的经济效益。
模具技术是精锻成形工艺链中最重要的一环。精锻件的高尺寸精度和表面质量,相应对模具设计、加工技术提出了更高的要求。精锻生产线的自动化趋势更增加了精锻模具的复杂程度。高效率的模具CAD/CAM/CAE…Cax平台已经成为精锻企业在激烈的市场竞争中取胜的关键技术。
2、精锻模具的特点
图1为典型的精锻零件,对于这一类零件,若采用热锻毛坯进行后续切削加工,则切削量大,效率低,成本高。而采用净成形或近似净成形技术以后,零件内腔表面直接达到或经一道磨削工序达到最终产品要求,大幅度提高生产效率。
和普通热锻件相比,精锻件及其模具开发的难度主要体现在以下三个方面:
(1)锻件尺寸精度要求高。精锻件,其内腔关键尺寸公差在±0.05mm以内,因而模具精度要求更高,从而增加了模具设计、模具加工以及精锻工艺的难度。
(2)对干净成形或近似净成形表面,小结构处的填充增加了模具设计和精锻工艺的难度。对于精锻件内腔的小倒角以及圆角等小结构,很有必要采用CAE软件进行模拟分析,否则试模次数大大增加。
(3)对于净成形表面,模具的弹性变形量以及精锻件的后续热处理变形量都可能超出锻件尺寸公差范围,设计模具时必须考虑此二类变形的补偿量。
对于精锻件,材料均为中碳钢,内腔型面比较复杂,采用单纯冷锻工艺难以成形,一般采用“温锻+冷精整”综合工艺成形。温锻采用多工位成形方式,设计各工步预锻毛坯时应充分考虑各变形工步的协调一致性,避免各类成形缺陷;温锻变形和冷精整变形的协调更是“温锻+冷精锻”综合成形工艺的关键。
如前所述,精锻成形大部分应用于汽车工业中的大批量生产,自动化程度高,生产节拍快。生产过程中需要高效的润滑冷却系统以及自动卸料、送料机构,整套模具成为一个比较复杂的系统;突破了传统热锻中上模、下模、顶杆的简单模具结构形式。复杂的模具结构客观上需要比较完善的CAD/CAE系统进行模具的设计和管理。