螺旋锥齿轮加工刀片失效分析及改进设计

   2018-04-10 386
核心提示:[db:简介]
螺旋锥齿轮与直齿锥齿轮和斜齿锥齿轮相比,具有重叠系数大、承载能力高、传动平稳、噪声小等良好性能,被广泛应用于铁路机车、船舶、汽车、拖拉机等机械产品中,提高了这些产品的可靠性和使用寿命。

  本文以正在研制中的某大型螺旋锥齿轮数控铣床为研究对象,针对其铣削时刀片出现的问题进行分析并进行优化改进。图1 是现场加工时的具体工况,在三维制图软件SolidWorks中建立刀片的几何模型,导入ANSYS 有限元分析软件,按照现场实验得到的切削力数据,加载求解,得到其应力等值线和应变等值线图,并根据结果进行刀片结构的优化改进,减少刀片的应力集中和应变,提高刀具寿命。


  刀片存在的问题

  根据原设计制造的刀片几何结构如图2 所示,实物照片如图3 所示。因刀片的几何结构及材质存在一定的问题,导致刀片的使用寿命极短,使用过程中,刀片圆角过小容易造成应力集中,刀片出现的失效情况如图4(崩刃)、由于目前刀片没有添加镀层,刀片会出现失效情况图5(破损)、偶尔故障时会出现刀具卡断情况如图6(断裂)。

图1 铣齿时的加工状态(刀具结构照片)

 图2 刀片的几何模型

图3 刀片的实际形状

图 4 刀片崩刃


  建立有限元模型


  刀片模型的建立以及网格的划分

  在SolidWorks 中建立刀片的几何模型,将其导入ANSYS 中进行分析。选择计算单元Solid Tet 8node 185(Solid 185)。刀片材料为硬质合金,取其力学性能为:密度ρ=7700kg/m?,弹性模量E=2.1E11 Pa,泊松比η=0.25。

图5 刀片破损

图6 刀片断裂


  使用自由网格命令划分网格,对螺栓连接应力集中处网格细化处理,增加结果准确性。所得有限元模型节点数47104 , 单元数为40950,结果如图7所示。

 图7 刀片的网格划分


  约束条件

  由于刀片在加工过程中,不允许有相对于刀柄的移动,要求刀片装夹牢靠,因此对刀具装夹与刀柄接触的面添加位移约束。刀片与刀柄的实际配合如图8 所示。

 图8 刀片与刀柄部装实物


  施加载荷并计算

  实验加工直径1540 mm 的锥齿轮齿坯时,利用HEIDENHAIN 数控系统自带的数据处理软件TNC scope 对刀具承受载荷的大小进行记录,得到刀具不同切削过程中所受到的载荷的大小及其变化。通过使用不同加工参数进行实验,得到加工表面质量最好时对应的切削参数为进给量f=5 mm/min、主轴转速n=75.36m/min、吃刀量ap=32 mm。并通过TNC scope得到其切削力的大小为2844N,将其作为载荷施加到切削刃上进行有限元分析得到结果如图9、图10 所示。

图 9 刀片的应变等值线图

 图10 刀片的应力等值线图


  改进方法

  为了减少应力集中和应变,可适当增大圆角,减少其应力集中和应变,对于可能出现的因积屑过多导致的刀具被卡住的问题,可在刀片上增加排屑槽,改变切屑的尺寸和形式,对于刀片断裂可在刀片上增加TiAlN 涂层以增加其强度。刀片修改后的模型划分网格的结果为图11,其余有限元前处理条件与改进前相同。对其加载试验对应的载荷,进行有限元分析计算,得到的应力、应变等值线如图12 和图13。

图 11 改进的刀片划分网格

图12 应力的等值线图

图13 应变的等值线图

 表 1 优化前后的对比


  结论

  经过对原结构刀片的有限元分析与现场实验结果的对比,得到此结构刀片在加工过程的主要问题及诱因,为这类问题的解决提供了可参考的依据。对刀片改进后的分析结果证明了这种方法的可行性,刀片的圆角以及排屑槽的添加只是理论上能解决这些问题,还需要现场实际实验的验证。

 

 
举报收藏 0打赏 0
 
更多>同类数控技术
推荐图文
推荐数控技术
点击排行
网站首页  |  关于我们  |  升级会员  |  联系客服  |  广告合作  |  广告位图  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  RSS订阅  |  违规举报  |  蜀ICP备2021024440号